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Two-dimensional frustrated Ising model with four phases

M. Pasquini and M. Serva
Dipartimento di Matematica and Istituto Nazionale Fisica della Materia, Univerdi#’Aquila, 1-67010 Coppito, L’Aquila, Italy
(Received 21 April 1997; revised manuscript received 10 June)1997

In this paper we consider@d=2 random Ising system on a square lattice with nearest neighbor interactions.
The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is
admitted. More precisely, the vertical bonds are supposed to be nonrandom while the horizontal bonds alter-
nate: one row of all nonrandom horizontal bonds is followed by one row where they are independent dichoto-
mic random variables. We solve the model using an approximate approach that replaces the quenched average
with an annealed average under the constraint that the number of frustrated plaquettes is kept fixed and equals
that of the true system. The surprising fact is that for some choices of the parameters of the model there are
three second-order phase transitions separating four different phases: antiferromagnetic, reentrant paramagnetic
(glassy?, ferromagnetic, and paramagnefi§1063-651X97)08709-9

PACS numbegps): 05.50:+q, 02.50-r

I. INTRODUCTION one can find four different phases.
The paper is organized as follows. In Sec. Il, after a

Mean field spin glass models have been studied andrief overview of the constrained annealing, we introduce
deeply understood both from a static and a dynamic point opur model with particular attention to the concept of frustra-
view and key words like replica symmetry breaking, aging,tion; then we write the partition function with constrained
and ultrametricity have become very widely used in statisti-frustration and the relative free energy. In Sec. Ill, we derive
cal mechanics of disordered systefis-5|. The reason spin the solution of the model, obtaining an expression for the
glasses have attracted so much attention is probably morefége energy that can be computed via numerical methods.
consequence of the many successful applications to biologMoreover, the exact ground state energy is found. In Sec.
cal modeling (neural networks, immune system, adaptive|V the conditions that yield to second-order phase transitions
evolution than their original scope, which was limited to the are derived. In Sec. V we describe the various behaviors of
description of disordered materials. For this reason anghe model, showing a total of four distinct phases, three al-
maybe for objective technical difficulties most of the typical most conventionakhigh temperature paramagnetic phase,
features which are very well established for the mean fielderromagnetic and antiferromagnetic phases at low tempera-
models have not been discovered for short range spitire) and a reentrant paramagnetic phase that we guess to
glasses. For example, it is commonly believed that a finitdhave a “glassy” nature. In Sec. VI we present our conclu-
temperature glassy phase only exists der3 spin glasses Sions.
while in d=2 one has only the paramagnetic phase. This is
an almost surely true statement if one considetds=2 spin Il. CONSTRAINED ANNEALING
system with independent bondl6—11] and with vertical- i i i
h)c/JrizontaI symmeFt)ry but it may be a false statement if one The _moc_iel is defined on a squgde=2 lattice and the
considersd=2 spin asymmetric systems with correlated dis_mtgractmn is supposed to be _effgctlve only betwe_en nearest
order. For example, in models with layered disorder the ex_nelghbors. The number of spln_sh\L:LM whereM is the
istence of a low temperature phase seems to be an estdiimber of columns of the lattice arid is the number of
lished fact[12—14; nevertheless, one may think that theseOWS: .
models are pathological since layered disorder is somehow a | "€ Vertical bonds are supposed to be nonrandom and one
long range correlated disorder. can assume without loss of generality that they equal 1 while

In this paper we considerdi=2 Ising system where there the_ horizontal bonds alternafte; one row of all nonrandom
is both a short range correlation of the disorder and an asynhonzontal_bonds equal to 1is f(.)"OWEd by one row whe_re
metry between vertical and horizontal direction. The specifidl€Y &€ independent dichotomic random variables which
interaction we chose is not motivated by a deep physicafdu@! 1 with probabilityp and equal the negative value
insight but it is merely dictated by technical reasons. Never-~ ¥ With probability 1—p (see Fig. 1 _
theless, the model is not very artificial and the disorder cor- 't follows that the Hamiltonian of our model can be writ-
relation is limited to the fact that frustrated plaquettes alway<€" as
are present in near couples while the asymmetry only lies in
a difference of strength of vertical and horizontal bonds.

We solve the model using an approximate approach that
replaces the quenched average with an annealed average un-
der the constraint that the number of frustrated plaquettes ighereo; ;= +1 is the spin in the site located by thi& row
kept fixed and equals that of the true system. The surprisingnd thejth column while theJ; ; are the horizontal bonds
fact is that for some choices of the parameters of the modelghich equal 1 whern is even and are defined by

L M
HN=_Z:1]§=:1(Ui,j0i+1,j+Ji,j0i,jffi,j+1), (2.1
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ementary frustration, we may define the total frustration of
the system¢N as the rate of frustrated plaquettes. In our

a model
___________________ .
2 1-3;,
a =— = 2.3
N N Z]_ jzl 1+y 23
b This quantity equal$ on average, furthermore, the strong

law of large numbers assures thilll — p with probability 1
_______________________ in the thermodynamic limit.
We are far from being able to solve the quenched model,
b nevertheless we think that the qualitative behavior of the
system is captured by the above definition of total frustration
([17], for a more general definition s¢&8]). Therefore our
proposal is to consider an annealed approximation wigre
is constrained to coincide, in the thermodynamic limit, with
he quenched total frustratign This model corresponds to
averagingZ only over the realizations of the disorder with
total frustrationp. We not only believe that the approxi-
mated model has the same qualitative features as the
quenched one, but it is also in good quantitative agreement
(2.2 with it. In fact, our experience is that constrained annealing
is a really powerful tool for estimating the free energy of
wheni is odd. disordered systemgl9-24. We would also like to stress
that the fixed frustration model can also be seen as an inde-
pendent model where the bonds as well as the spins are al-
lowed to arrange themselves in order to minimize the free
energy provided they satisfy the global frustration constraint.
In order to obtain the free energy of the fixed frustration
model we follow the general methd@l9,22). We must first
define the generalized partition function

FIG. 1. A typical realization of the system. The full lines repre-
sent the+1 ferromagnetic bonds, while the dashed lines are th
— vy antiferromagnetic bonds. Tteelementary plaquettes are frus-
trated, at difference with thib plaquettes.

_ |1 with probability 1-p
Jij= —v with probability p

The model is parametrized by>0 andp and, in general,
it is random, except in the two limit casps-0 andp— 1. In
the first limit casep=0 all the couplings equal unity and
therefore we have the pum=2 Ising model[15]. In the
second limit casgp=1 the model is also not random, but
while all the vertical couplings equal unity, the horizontal
couplings alternate one row in which they are all positive
and equal to unity to one row in which they are all negative
and equal to—+y. In this second limit the model can be
solved by standard transfer matrix meth#iS] and it shows ZN(,B,%,LL)=2 exd — BHn+uN(oNy—p)], (2.4
a low temperature magnetic phase; fp<1 this low tem-

perature phase is ferromagnetic while for 1 there is hori-  \yhere g=1/T is the inverse temperature, and the average is
zontal antiferromagnetic order and vertical ferromagnetic orqyer all realizations of the couplings; . Then we obtain the

der between the spins. For the sake of simplicity we willfree energy of the constrained annealed model as
hereafter call this complicated magnetic phase simply the

antiferromagnetic phase. Finally, the special chgieel, vy

=1 corresponds to the so-called “fully frustrated model”
[16] which is also not random and has a transition only at
T=0.

In order to explain the nature of our approximation, let uswhere theN—  limit means that bottM andL must tend to
first recall that the elementary unit for frustration is thethe same limit. In fact, the minimization over automati-
plaquette. If the product of the signs of the bonds around @ally selects the realizations of the disorder for whigk
plaquette is negative the plaquette is frustrated, otherwise the p in the thermodynamic limit.
plaquette is unfrustrated. In our Ising model, only the sign of
the random variablg; ; with oddi can be negative, therefore
the two square plaquettes which share this bond are frus-
trated if this bond is effectively negative.g.,a plaquettes
in Fig. 1) and they are unfrustrated if it is positive  The generalized partition function is a sum of a product of
(b plaquettes As a consequence of this definition of el- randomly independent variables, therefore we can write

1
f(B,y)=—min lim N—BInZ(,B,y,M), (2.5

m N—o

Ill. SOLUTION OF THE MODEL
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The average can now be easily performed, obtaining 0.3+
N Entropy y=1
Zn(Byy,p)=exp o {In[4p(1—p)]-2(2p—1)p+a} 2]
s ] T=0
~ ] > 1
x{E} exf — BHy], (3.1) 7 !
where we have introduced the effective Hamiltonian 04 el
L M ]
—~ ~ -0.1 4
HN:_iZl 121 (01,0111 3i07 07 +1)- ]
OIIIO4|2III0.I4I'IO.'6'IIO.|8I.I{

~ p
The new effective horizontal bonds are not random, they

are all equal in the same row, and they alternate two possible FIG. 2. Zero temperature entrof$ as a function ofp at y
values in_different rows; in fact, one has=1 wheni is <1 =1 andy>1. In the last cas&, becomes positive fop
even and); =b/23 wheni is odd. The constant andb are ~ ~ P’ wherep<3, andSy(p=7)=0.01,

1+7y 1 1-p where 8* = —In tanhB, and r,, 7, are Pauli matrices. After
a=In cos!{ B T—,u,-i— > In T) some trivial algebra one gets
h( 1+y 1 1—p” \(a,b)=t(q,b)+ Vt(q,b)~ 1, (3.9
Xcosh B ——+u—5In——||, 3.2
Pt B2 it
1+vy 1 1-p B sinkb sinh(23+b)
cosr{,B T_M+§InT t(g,b)=2 cogq W—Z cogy coshZBW
b=In o 1 1-o "BL=7.
cosf{ﬁ _7+M_ Zin =P cost2g cosh{23+b)+cosi28—Db) 3
2 2 P * sintf23 - 39

It is possible to show thdi is a monotonic decreasing func-  The minimum of Eq(3.3 is realized forb=b* and it is
tion of u with —2yB<b<2, so that we can directly Use  chieved by looking for the zero of its derivative. One has
as a variational parameter in order to realize the minimum ifpq self-consistent equation for
Eq. (2.5.

The effective HamiltoniarHy is indeed associated to a
pure A Ising model with unitary strength couplings along
the vertical bonds, and with alternated rows of unitary and

2p 2(1-p)
R s

b/2B strength couplings. This model can be solved by trivi-
o ; - : 1 (= dt(q,b)/db
ally generalizing the Onsager solution and it is mapped into - q —— =0. (3.6
the problem of diagonalizing a collection 0f<2 matrices. 47 Jo 7 \t(q,b)?-1 b b*
In the thermodynamic limiN— oo the total free energy2.5)
reads When p—0 the model has to reduce to the standard Ising

model and in fact, the previous formula leadshitt— 23,

_ytpl—y) 1 while in the other limit cas@p—1 one ha* — —2y8.

N A S A P(1—p)l—P
HB.7) 2 28 In{4pP(1-p) Equation(3.6) is an ordinary equation ib, nevertheless
b it cannot be explicitly solved, so we are not able to give a
; ; i _ compact expression fdr* in terms of T, y, andp. How-
X + — .
SinfLB(1+ y)]sink(25)} ”Lm 4B (1=2p) ever, Eq.(3.6) and then Eq(3.3) can be numerically com-
puted with the necessary precision in order to fully investi-
1-p b4 p _ gate the model. Furthermore, B0 while we do not have
- - By _1)— — 2B-b__ . ' .
28 In(e®"="7—1) 28 In(e 1 the complete solution of E3.6) we are able to derive the

leading terms ob* and to compute the ground state energy
Uy. We find out thatUy has different linear behaviors in

1 T
" anp fo daink(a.b)/, 33 depending ony,
where\ (q,b) indicates the maximum eigenvalue in modulus Ui —24 1 11—
of the product of the two matrices 0 2 P
Tg(q) =exd B* (7,cox0+ 7,sing) lexp( —287,), The T=0 entropyS, can only be computed numerically

_ and it is shown in Fig. 2. Unlike the enerdyy, Sy equals a
Tp(q) =exd B* (r,cox+ 7,sing) Jexp(—b,), constant function op for any of the three choices of It is
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FIG. 3. p-T phase diagram at different () y=0.8; (b) y=1; (c) y=1.2; (d) y=3.
always zero fory<1l and S;=0 for y=1. In the casey A direct inspection of Eq(3.5 shows that Eq(4.1) can
>1 the entropy is negative fqu<p, wherep<3 and be- be satisfied only for the specific choicgs-0 or q= =, and
comes positive forp>p [Sy(p=3)=0.01]. It should be it determines the existence of two distinct transition lines in
kept in mind that the negative entropy at very low temperathe p-T phase diagram at fixegl (see Fig. 3. The first line
ture is an artifact of the annealed approximation which mayends on thep=0 (pure Ising model axis at the Onsager
become very bad wheh— 0. From a technical point of view critical temperature, so that in the following we will refer to
this is a consequence of the fact that one does not take intis transition line as the ferromagnetic one. The second line
account the entropic contribution due to the different realizaexists only fory=1 and it ends on thg@=1 axis in corre-
tions of the disorder. spondence with the critical temperature separating the anti-
ferromagnetic phase from the paramagnetic one; for this rea-
son we will call it the antiferromagnetic line.

After some trivial algebra Eq4.1) reduces to

IV. TRANSITIONS

Let us stress again that formulé&3)—(3.6) represent the
solution of the model, and, in principle, all the information
about it can be derived from them. Fortunately, even if we
are unable to give an explicit expressionldf starting from
Eq. (3.6), we can easily obtain some analytic results. For,

: S . , " ) where the signt corresponds to the ferromagnetic ling (
instance, in this section we find the conditions that yield to a 0), and the sign- to the antiferromagnetic onej& ).

second-order phase transition. - -
. : In the limit casep=0 (b*=2p8), Eq. (4.2) recovers the
Looking c_arefully at Eqs(3.3~(3.6), one can re_allze that Well-known result sinh(8)=1, while in the other limit case
the mechanism of the usual Onsager transition is preserved:” * " :
p=1 (b 2Bvy) the transition is present when

t.h.e discontinuity occurs whelo*, the zero of Eq(3.6), nul— Sin{28(1— y)]= - 2 coshB/sinte24, i.e., at finite tempera-
lifies also the argument of the square root in E}4), i.e., "

ture wheny>1 and at zero temperature for the “fully frus-
when ”

trated model” (y=1).

From a practical point of view, in order to compute nu-

merically the transition lines which are shown in Fig. 3, it is
convenient to solve Eq4.1) with respect tdb*,

cosh3
in

Sinr’(ZB'Fb*):iZWZ—B, (42)

t(g,b*)=1 4.1
[the caset(g,b*)=—1 is not possible sinc&(q,b)=1 for
Vg andVb]. In other terms, one has to find out the solution
b* of a system of two equation§3.6) and(4.1). Obviously
this solution can exist only for certain valuesgfy, andp.

cosh3
sinhz2,8) ~2B.

b*==+ arcsinVE 2 4.3
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Then, keepingy fixed and substituting* into Eq.(3.6), one 0.12+ w1058
obtains the two transition lineg(T), which can be easily
computed by standard numerical algorithms. The two previ- ¢, | Specific heat 01050
ous equations for the phase boundaries could also be rewrit-
ten in a simpler form in terms of the dual couplings follow- 0,10
ing [25] where similar expressions are found. c
0.09 +
V. PHASES

In the preceding section we have seen that(B@) gives 0.08
the known critical temperatures of the nonrandom models
(p=0 or 1). Other preliminary information about the behav- B
ior of the model comes from the observation that the right 0.30 0.40 0.50

hand side of Eq(4.2) goes to zero in the limiT—0, so that

the ferromagnetic and the antiferromagnetic lines must coin- FIG. 4. Specific heaC as a function ofT for y=1.2 andp

cide when they end on thE=0 axis. Studying the leading =0.82. The first peak, located @t=0.299, is referred to an anti-

terms of Eq.(3.6) close toT=0, one finds that this coincid- ferromagnetic transition, while the others, magnified in ing@ts

ing point is atp=1 for y=1 and atp=2 for y>1. _=0.349 andr=0.549, to fer_romagnetic transitions. The circles in
The full description of the different behaviors can be de-iNSets represent our numerical data.

rived computing the transition lines in the T phase dia-

gram at varyingy, as seen in the preceding section. Thenify the picture since it is necessary to compute E)3)

following four scenarios listed in Fig. 3 are obtained. with a great precision in order to show a certain growtiCof
For y<1 [see Fig. &), wherey=0.8] only the ferromag- around its discontinuity.

netic line is present, separating two well-known phases: a The appearance of a low temperature paramagnetic phase

ferromagnetic phase at low temperature, and a paramagnep@tween the antiferromagnetic and the ferromagnetic ones

phase at high temperature, exactly as for the Onsager nofepresents an interesting peculiarity of this model. In particu-

random model. In fact the antiferromagnetic random coular, it happens at relatively low temperature and with an ex-

plings are too weak with respect to the ferromagnetic onedremely narrow width. These are the main features that per-

so that they are not able to change the structure of the phasédade us to guess a glassy nature for this reentrant

of the pure model. paramagnetic phase. Moreover, in our constrained annealed
When y=1 [Fig. 3(b)] the scenario is quite similar to the Model, as seen at the end of Sec. llI, the region at low tem-

previous one, apart from the fact that the ferromagnetic lind€erature with an unphysical soluti¢negative zero tempera-

reaches the axi§=0 atp=1, in correspondence with the ture entropySy) does not reach the critical transition point

T=0 transition of the fully frustrated model. Notice that the (P=3, T=0) where the reentrant paramagnetic phase ends.

antiferromagnetic transition line is still absent. In fact, theFor this reason, we can assume that the main qualitative

antiferromagnetic couplings have the same strength as tHgatures of the annealed approximation remain unchanged in

others but, for anyp<1, their number is lower than the the quenched model. _ o

number of horizontal ferromagnetic couplings so that the fer- The description of the different scenarios is completed

romagnetic order prevails at low temperature. with the casey>2 [Fig. 3(d), wherey=3]. The structure of
The most interesting situation corresponds to the choicéh® phase diagram is similar to the previous one with the

1< y<2 [Fig. 3(c), where y=1.2]. First of all notice that difference that the narrow tongue between the ferro and the

both the transition lines are present. The first line starts o@ntiferro phases is suppressed. As a consequence<fGr

the p=0 axis and it ends ap=3 on theT=0 axis and it We only have the ferro and the para phases whilgfer we

delimits the low temperature ferromagnetic region. The seconly have the antiferro and the para phases. Wperre the

ond line starts on th@=0 axis atp=3 ending on thep ~ temperature of end point on the=1 axis goes to infinite.

=1 axis, and it delimits the antiferromagnetic phase. Outside Before ending this section we would like to stress that

these two regions there is a nonmagnetic phase, but notidoth numerical evidence and a direct inspection of analytic

that this one has a narrow tongue dividing the magnetic reéxpressions suggest that the logarithmic divergence at the

gions and reaching tHe=0 axis atp= 3. As a consequence, trz_;msmon lines remains unchanged with respect t_o the_ pure

if one fixes the probability betweeh< p< 2+ sp(y), where Ising system, so that the mpdel cannot bg dgscrlbed in the

8p() is a small but finite number depending gnone can general framework of the Fisher renormalization of critical

observe three different second-order phase transitions vargXPonentg26].

ing the temperaturd@. The transitions separate four phases;

starting from low temperatures, the first is ferromagnetic, the VI. CONCLUSIONS

third is antiferromagnetic, the fourth is an ordinary paramag-

netic phase while the second is a low temperature paramag- 1he surprising feature of our model is that for some

netic phase. In Fig. 4 is shown the specific h€atas a  choices of the parametessand p the magnetic phases are

function of T at fixed y=1.2 andp=0.82, computed starting Separated by a low temperature paramagnetic phase. We do

from the numerical solution of Eq$3.3) and (3.6). In this  hot expect any long distance magnetic order in this phase,

case the specific he@ exhibits three distinct peaks next to i.e.,(0j joi j 1) =(0i jTi+k;)=0 in the limitk— but we

T=0.299,T=0.349, andr=0.545. Indeed we need to mag- expect that{a; ;i +x)°>0 and (o; joi4;)*>0 in the
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same limit. Our proposal is that these last two quantitiesies of opposite sign have the same qualitative behavior? We
properly characterize the reentrant paramagnetic pfga®n cannot approximate such a model by our fixed frustration

if they should not vanish in the high temperature paramagtechnique so that this question can also only be answered by
netic phasg Unfortunately, it is well known that in two- Monte Carlo simulation; nevertheless, we are convinced that
dimensional models the computation of long distance correthe answer should be positive. In fact, the special nature of
lation is a difficult task and, in our case, the computation alsqorrelation between plaquettes is short ranged and there is no

involves averages over the disorder, making the situatioreason why it should affect the long range behavior of the
even more complicated. We think that some work can beystem.

done in this direction but it will demand much technical  |n conclusion, we would like to stress that in spite of the
effort so that our claim that the reentrant paramagnetic phasgery partial results contained in this paper and of the many
is somehow a glassy phase is, at this point, more a conjectuigsolved questions this work sheds some light on the very
than an established fact. important point of the existence of a finite temperature dis-
Two more questions remain to be answered. The first igrdered phase fod=2 frustrated systems. In fact, in the
the most relevant: what is the role of the annealed approximost restrictive interpretation of our result we can still affirm
mation in the qualitative features of the phase diagram? Ophat the fixed frustration annealet=2 model has a low
better, is the new phase a mere consequence of the annealgéhperature glassylike phase, while in the most generous one

apprOXimation? - In this -Ca.SG, our ﬁxed frustration mOdelwe can say that a true g|assy phase exists for quenched ran-
would have an interest in itself but it would not be a goodgom d=2 systems.

approximation of the quenched one. We think that this ques-
tion can only be answered by direct Monte Carlo simulation.

The second question is, in this mod_el the frustrate_d ACKNOWLEDGMENTS
plaguettes appear only in couples, what is the role of this
special correlation? To be more specific, would a model in We acknowledge the financial support of the INFN,
which all vertical bonds equal unity while the horizontal are National Laboratories of Gran Sassgniziativa Specifica
independent random variables which take two possible valFI11). We thank Roberto Baviera for useful discussions.
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