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Two-dimensional frustrated Ising model with four phases
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~Received 21 April 1997; revised manuscript received 10 June 1997!

In this paper we consider ad52 random Ising system on a square lattice with nearest neighbor interactions.
The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is
admitted. More precisely, the vertical bonds are supposed to be nonrandom while the horizontal bonds alter-
nate: one row of all nonrandom horizontal bonds is followed by one row where they are independent dichoto-
mic random variables. We solve the model using an approximate approach that replaces the quenched average
with an annealed average under the constraint that the number of frustrated plaquettes is kept fixed and equals
that of the true system. The surprising fact is that for some choices of the parameters of the model there are
three second-order phase transitions separating four different phases: antiferromagnetic, reentrant paramagnetic
~glassy?!, ferromagnetic, and paramagnetic.@S1063-651X~97!08709-6#

PACS number~s!: 05.50.1q, 02.50.2r
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I. INTRODUCTION

Mean field spin glass models have been studied
deeply understood both from a static and a dynamic poin
view and key words like replica symmetry breaking, agin
and ultrametricity have become very widely used in stati
cal mechanics of disordered systems@1–5#. The reason spin
glasses have attracted so much attention is probably mo
consequence of the many successful applications to biol
cal modeling ~neural networks, immune system, adapti
evolution! than their original scope, which was limited to th
description of disordered materials. For this reason
maybe for objective technical difficulties most of the typic
features which are very well established for the mean fi
models have not been discovered for short range s
glasses. For example, it is commonly believed that a fin
temperature glassy phase only exists ford>3 spin glasses
while in d52 one has only the paramagnetic phase. Thi
an almost surely true statement if one considers ad52 spin
system with independent bonds@6–11# and with vertical-
horizontal symmetry but it may be a false statement if o
considersd52 spin asymmetric systems with correlated d
order. For example, in models with layered disorder the
istence of a low temperature phase seems to be an e
lished fact@12–14#; nevertheless, one may think that the
models are pathological since layered disorder is someho
long range correlated disorder.

In this paper we consider ad52 Ising system where ther
is both a short range correlation of the disorder and an as
metry between vertical and horizontal direction. The spec
interaction we chose is not motivated by a deep phys
insight but it is merely dictated by technical reasons. Nev
theless, the model is not very artificial and the disorder c
relation is limited to the fact that frustrated plaquettes alw
are present in near couples while the asymmetry only lie
a difference of strength of vertical and horizontal bonds.

We solve the model using an approximate approach
replaces the quenched average with an annealed averag
der the constraint that the number of frustrated plaquette
kept fixed and equals that of the true system. The surpris
fact is that for some choices of the parameters of the mo
561063-651X/97/56~3!/2751~6!/$10.00
d
f

,
i-

a
i-

d
l
ld
in
e

is

e
-
-

ab-

a

-
c
al
r-
r-
s
in

at
un-
is
g
ls

one can find four different phases.
The paper is organized as follows. In Sec. II, after

brief overview of the constrained annealing, we introdu
our model with particular attention to the concept of frust
tion; then we write the partition function with constraine
frustration and the relative free energy. In Sec. III, we der
the solution of the model, obtaining an expression for
free energy that can be computed via numerical metho
Moreover, the exact ground state energy is found. In S
IV the conditions that yield to second-order phase transiti
are derived. In Sec. V we describe the various behavior
the model, showing a total of four distinct phases, three
most conventional~high temperature paramagnetic phas
ferromagnetic and antiferromagnetic phases at low temp
ture! and a reentrant paramagnetic phase that we gues
have a ‘‘glassy’’ nature. In Sec. VI we present our conc
sions.

II. CONSTRAINED ANNEALING

The model is defined on a squared52 lattice and the
interaction is supposed to be effective only between nea
neighbors. The number of spins isN5LM whereM is the
number of columns of the lattice andL is the number of
rows.

The vertical bonds are supposed to be nonrandom and
can assume without loss of generality that they equal 1 w
the horizontal bonds alternate; one row of all nonrand
horizontal bonds equal to 1 is followed by one row whe
they are independent dichotomic random variables wh
equal 1 with probabilityp and equal the negative value
2g with probability 12p ~see Fig. 1!.

It follows that the Hamiltonian of our model can be wri
ten as

HN52(
i 51

L

(
j 51

M

~s i , js i 11,j1Ji , js i , js i , j 11!, ~2.1!

wheres i , j561 is the spin in the site located by thei th row
and the j th column while theJi , j are the horizontal bonds
which equal 1 wheni is even and are defined by
2751 © 1997 The American Physical Society



d

t
a
ive
ive
e

o
il
th

l’’
a

u
he
d
t
o

e
ru

e
l-

of
ur

g

el,
the
ion

ith

h
i-
the
ent

ing
of

de-
e al-
ree
int.
on

e is

of

e-
th
s-

2752 56M. PASQUINI AND M. SERVA
Ji , j5 H1 with probability 12p
2g with probability p ~2.2!

when i is odd.
The model is parametrized byg.0 andp and, in general,

it is random, except in the two limit casesp→0 andp→1. In
the first limit casep50 all the couplings equal unity an
therefore we have the pured52 Ising model@15#. In the
second limit casep51 the model is also not random, bu
while all the vertical couplings equal unity, the horizont
couplings alternate one row in which they are all posit
and equal to unity to one row in which they are all negat
and equal to2g. In this second limit the model can b
solved by standard transfer matrix methods@15# and it shows
a low temperature magnetic phase; forg,1 this low tem-
perature phase is ferromagnetic while forg.1 there is hori-
zontal antiferromagnetic order and vertical ferromagnetic
der between the spins. For the sake of simplicity we w
hereafter call this complicated magnetic phase simply
antiferromagnetic phase. Finally, the special choicep51, g
51 corresponds to the so-called ‘‘fully frustrated mode
@16# which is also not random and has a transition only
T50.

In order to explain the nature of our approximation, let
first recall that the elementary unit for frustration is t
plaquette. If the product of the signs of the bonds aroun
plaquette is negative the plaquette is frustrated, otherwise
plaquette is unfrustrated. In our Ising model, only the sign
the random variableJi , j with odd i can be negative, therefor
the two square plaquettes which share this bond are f
trated if this bond is effectively negative~e.g.,a plaquettes
in Fig. 1! and they are unfrustrated if it is positiv
~b plaquettes!. As a consequence of this definition of e

FIG. 1. A typical realization of the system. The full lines repr
sent the11 ferromagnetic bonds, while the dashed lines are
2g antiferromagnetic bonds. Thea elementary plaquettes are fru
trated, at difference with theb plaquettes.
l

r-
l
e

t

s

a
he
f

s-

ementary frustration, we may define the total frustration
the systemfN as the rate of frustrated plaquettes. In o
model

fN5
2

N (
i 51

L

(
j 51

M
12Ji , j

11g
. ~2.3!

This quantity equalsp on average, furthermore, the stron
law of large numbers assures thatfN→p with probability 1
in the thermodynamic limit.

We are far from being able to solve the quenched mod
nevertheless we think that the qualitative behavior of
system is captured by the above definition of total frustrat
~@17#, for a more general definition see@18#!. Therefore our
proposal is to consider an annealed approximation wherefN
is constrained to coincide, in the thermodynamic limit, w
the quenched total frustrationp. This model corresponds to
averagingZ only over the realizations of the disorder wit
total frustrationp. We not only believe that the approx
mated model has the same qualitative features as
quenched one, but it is also in good quantitative agreem
with it. In fact, our experience is that constrained anneal
is a really powerful tool for estimating the free energy
disordered systems@19–24#. We would also like to stress
that the fixed frustration model can also be seen as an in
pendent model where the bonds as well as the spins ar
lowed to arrange themselves in order to minimize the f
energy provided they satisfy the global frustration constra

In order to obtain the free energy of the fixed frustrati
model we follow the general method~@19,22#!. We must first
define the generalized partition function

ZN~b,g,m!5(
s

exp@2bHN1mN~fN2p!#, ~2.4!

whereb51/T is the inverse temperature, and the averag
over all realizations of the couplingsJi , j . Then we obtain the
free energy of the constrained annealed model as

f ~b,g!52min
m

lim
N→`

1

Nb
lnZ~b,g,m!, ~2.5!

where theN→` limit means that bothM andL must tend to
the same limit. In fact, the minimization overm automati-
cally selects the realizations of the disorder for whichfN
5p in the thermodynamic limit.

III. SOLUTION OF THE MODEL

The generalized partition function is a sum of a product
randomly independent variables, therefore we can write

e

ZN~b,g,m!5(
s

)
i 51

L

)
j 51

M

expFbs i , js i 11,j1bJi , js i , js i , j 111mS 2
12Ji , j

11g
2pD G .
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56 2753TWO-DIMENSIONAL FRUSTRATED ISING MODEL WITH . . .
The average can now be easily performed, obtaining

ZN~b,g,m!5expFN

4
$ ln@4p~12p!#22~2p21!m1a%G

3(
$s%

exp@2bH̃N#, ~3.1!

where we have introduced the effective Hamiltonian

H̃N52(
i 51

L

(
j 51

M

~s i , js i 11,j1 J̃is i , js i , j 11!.

The new effective horizontal bondsJ̃i are not random, they
are all equal in the same row, and they alternate two poss
values in different rows; in fact, one hasJ̃i51 when i is
even andJ̃i5b/2b wheni is odd. The constantsa andb are

a5 lnFcoshS b
11g

2
2m1

1

2
ln

12p

p D
3coshS b

11g

2
1m2

1

2
ln

12p

p D G , ~3.2!

b5 ln

coshS b
11g

2
2m1

1

2
ln

12p

p D
coshS b

11g

2
1m2

1

2
ln

12p

p D 1b~12g!.

It is possible to show thatb is a monotonic decreasing func
tion of m with 22gb<b<2b, so that we can directly useb
as a variational parameter in order to realize the minimum
Eq. ~2.5!.

The effective HamiltonianH̃N is indeed associated to
pure 2d Ising model with unitary strength couplings alon
the vertical bonds, and with alternated rows of unitary a
b/2b strength couplings. This model can be solved by tri
ally generalizing the Onsager solution and it is mapped i
the problem of diagonalizing a collection of 232 matrices.
In the thermodynamic limitN→` the total free energy~2.5!
reads

f ~b,g!52
g1p~12g!

2
2

1

2b
ln$4pp~12p!12p

3sinh@b~11g!#sinh~2b!%2min
b

F b

4b
~122p!

2
12p

2b
ln~eb12bg21!2

p

2b
ln~e2b2b21!

1
1

4pb E
0

p

dq lnl~q,b!G , ~3.3!

wherel(q,b) indicates the maximum eigenvalue in modul
of the product of the two matrices

Tb~q!5exp@b* ~tzcosq1txsinq!#exp~22btz!,

T̃b~q!5exp@b* ~tzcosq1txsinq!#exp~2btz!,
le

n

d
-
o

whereb* 52 ln tanhb, and tx ,tz are Pauli matrices. After
some trivial algebra one gets

l~q,b!5t~q,b!1At~q,b!221, ~3.4!

with

t~q,b!52 cos2q
sinhb

sinh2b
22 cosq cosh2b

sinh~2b1b!

sinh22b

1
cosh22b cosh~2b1b!1cosh~2b2b!

sinh22b
. ~3.5!

The minimum of Eq.~3.3! is realized forb5b* and it is
achieved by looking for the zero of its derivative. One h
the self-consistent equation forb:

F11
2p

e2b2b21
2

2~12p!

12e22bg2b

1
1

4p E
0

p

dq
]t~q,b!/]b

At~q,b!221
G

b5b*

50. ~3.6!

When p→0 the model has to reduce to the standard Is
model and in fact, the previous formula leads tob*→2b,
while in the other limit casep→1 one hasb*→22gb.

Equation~3.6! is an ordinary equation inb, nevertheless
it cannot be explicitly solved, so we are not able to give
compact expression forb* in terms ofT, g, and p. How-
ever, Eq.~3.6! and then Eq.~3.3! can be numerically com-
puted with the necessary precision in order to fully inves
gate the model. Furthermore, atT50 while we do not have
the complete solution of Eq.~3.6! we are able to derive the
leading terms ofb* and to compute the ground state ener
U0 . We find out thatU0 has different linear behaviors inp
depending ong,

U05221S 12
u12gu

2 D p.

The T50 entropyS0 can only be computed numericall
and it is shown in Fig. 2. Unlike the energyU0 , S0 equals a
constant function ofp for any of the three choices ofg. It is

FIG. 2. Zero temperature entropyS0 as a function ofp at g
,1, g51, andg.1. In the last caseS0 becomes positive forp
. p̃, wherep̃,

3
4 , andS0(p5

3
4 ).0.01.
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FIG. 3. p-T phase diagram at differentg: ~a! g50.8; ~b! g51; ~c! g51.2; ~d! g53.
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always zero forg,1 and S0>0 for g51. In the caseg
.1 the entropy is negative forp, p̃, where p̃, 3

4 and be-
comes positive forp. p̃ @S0(p5 3

4 ).0.01#. It should be
kept in mind that the negative entropy at very low tempe
ture is an artifact of the annealed approximation which m
become very bad whenT→0. From a technical point of view
this is a consequence of the fact that one does not take
account the entropic contribution due to the different reali
tions of the disorder.

IV. TRANSITIONS

Let us stress again that formulas~3.3!–~3.6! represent the
solution of the model, and, in principle, all the informatio
about it can be derived from them. Fortunately, even if
are unable to give an explicit expression ofb* starting from
Eq. ~3.6!, we can easily obtain some analytic results. F
instance, in this section we find the conditions that yield t
second-order phase transition.

Looking carefully at Eqs.~3.3!–~3.6!, one can realize tha
the mechanism of the usual Onsager transition is preser
the discontinuity occurs whenb* , the zero of Eq.~3.6!, nul-
lifies also the argument of the square root in Eq.~3.4!, i.e.,
when

t~q,b* !51 ~4.1!

@the caset(q,b* )521 is not possible sincet(q,b)>1 for
;q and;b#. In other terms, one has to find out the soluti
b* of a system of two equations,~3.6! and ~4.1!. Obviously
this solution can exist only for certain values ofb, g, andp.
-
y

to
-

e

r
a

d:

A direct inspection of Eq.~3.5! shows that Eq.~4.1! can
be satisfied only for the specific choicesq50 or q5p, and
it determines the existence of two distinct transition lines
the p-T phase diagram at fixedg ~see Fig. 3!. The first line
ends on thep50 ~pure Ising model! axis at the Onsage
critical temperature, so that in the following we will refer t
this transition line as the ferromagnetic one. The second
exists only forg>1 and it ends on thep51 axis in corre-
spondence with the critical temperature separating the a
ferromagnetic phase from the paramagnetic one; for this
son we will call it the antiferromagnetic line.

After some trivial algebra Eq.~4.1! reduces to

sinh~2b1b* !562
cosh2b

sinh22b
, ~4.2!

where the sign1 corresponds to the ferromagnetic line (q
50), and the sign2 to the antiferromagnetic one (q5p).

In the limit casep50 (b* 52b), Eq. ~4.2! recovers the
well-known result sinh(2b)51, while in the other limit case
p51 (b* 522bg) the transition is present whe
sinh@2b(12g)#522 cosh2b/sinh22b, i.e., at finite tempera-
ture wheng.1 and at zero temperature for the ‘‘fully frus
trated model’’ (g51).

From a practical point of view, in order to compute n
merically the transition lines which are shown in Fig. 3, it
convenient to solve Eq.~4.1! with respect tob* ,

b* 56arcsinhS 2
cosh2b

sinh22b D22b. ~4.3!
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Then, keepingg fixed and substitutingb* into Eq.~3.6!, one
obtains the two transition linesp(T), which can be easily
computed by standard numerical algorithms. The two pre
ous equations for the phase boundaries could also be re
ten in a simpler form in terms of the dual couplings follow
ing @25# where similar expressions are found.

V. PHASES

In the preceding section we have seen that Eq.~4.2! gives
the known critical temperatures of the nonrandom mod
~p50 or 1!. Other preliminary information about the beha
ior of the model comes from the observation that the ri
hand side of Eq.~4.2! goes to zero in the limitT→0, so that
the ferromagnetic and the antiferromagnetic lines must c
cide when they end on theT50 axis. Studying the leading
terms of Eq.~3.6! close toT50, one finds that this coincid
ing point is atp51 for g51 and atp5 3

4 for g.1.
The full description of the different behaviors can be d

rived computing the transition lines in thep-T phase dia-
gram at varyingg, as seen in the preceding section. T
following four scenarios listed in Fig. 3 are obtained.

For g,1 @see Fig. 3~a!, whereg50.8# only the ferromag-
netic line is present, separating two well-known phases
ferromagnetic phase at low temperature, and a paramag
phase at high temperature, exactly as for the Onsager
random model. In fact the antiferromagnetic random c
plings are too weak with respect to the ferromagnetic on
so that they are not able to change the structure of the ph
of the pure model.

Wheng51 @Fig. 3~b!# the scenario is quite similar to th
previous one, apart from the fact that the ferromagnetic
reaches the axisT50 at p51, in correspondence with th
T50 transition of the fully frustrated model. Notice that th
antiferromagnetic transition line is still absent. In fact, t
antiferromagnetic couplings have the same strength as
others but, for anyp,1, their number is lower than th
number of horizontal ferromagnetic couplings so that the
romagnetic order prevails at low temperature.

The most interesting situation corresponds to the cho
1,g,2 @Fig. 3~c!, whereg51.2#. First of all notice that
both the transition lines are present. The first line starts
the p50 axis and it ends atp5 3

4 on theT50 axis and it
delimits the low temperature ferromagnetic region. The s
ond line starts on theT50 axis atp5 3

4 ending on thep
51 axis, and it delimits the antiferromagnetic phase. Outs
these two regions there is a nonmagnetic phase, but no
that this one has a narrow tongue dividing the magnetic
gions and reaching theT50 axis atp5 3

4 . As a consequence
if one fixes the probability between34 ,p, 3

4 1dp(g), where
dp(g) is a small but finite number depending ong, one can
observe three different second-order phase transitions v
ing the temperatureT. The transitions separate four phase
starting from low temperatures, the first is ferromagnetic,
third is antiferromagnetic, the fourth is an ordinary param
netic phase while the second is a low temperature param
netic phase. In Fig. 4 is shown the specific heatC as a
function ofT at fixedg51.2 andp50.82, computed starting
from the numerical solution of Eqs.~3.3! and ~3.6!. In this
case the specific heatC exhibits three distinct peaks next t
T.0.299,T.0.349, andT.0.545. Indeed we need to mag
i-
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nify the picture since it is necessary to compute Eq.~3.3!
with a great precision in order to show a certain growth ofC
around its discontinuity.

The appearance of a low temperature paramagnetic p
between the antiferromagnetic and the ferromagnetic o
represents an interesting peculiarity of this model. In parti
lar, it happens at relatively low temperature and with an
tremely narrow width. These are the main features that p
suade us to guess a glassy nature for this reent
paramagnetic phase. Moreover, in our constrained anne
model, as seen at the end of Sec. III, the region at low te
perature with an unphysical solution~negative zero tempera
ture entropyS0! does not reach the critical transition poi
~p5 3

4 , T50! where the reentrant paramagnetic phase en
For this reason, we can assume that the main qualita
features of the annealed approximation remain unchange
the quenched model.

The description of the different scenarios is comple
with the caseg.2 @Fig. 3~d!, whereg53#. The structure of
the phase diagram is similar to the previous one with
difference that the narrow tongue between the ferro and
antiferro phases is suppressed. As a consequence forp, 3

4

we only have the ferro and the para phases while forp. 3
4 we

only have the antiferro and the para phases. Wheng→` the
temperature of end point on thep51 axis goes to infinite.

Before ending this section we would like to stress th
both numerical evidence and a direct inspection of anal
expressions suggest that the logarithmic divergence at
transition lines remains unchanged with respect to the p
Ising system, so that the model cannot be described in
general framework of the Fisher renormalization of critic
exponents@26#.

VI. CONCLUSIONS

The surprising feature of our model is that for som
choices of the parametersg and p the magnetic phases ar
separated by a low temperature paramagnetic phase. W
not expect any long distance magnetic order in this pha
i.e., ^s i , js i , j 1k&5^s i , js i 1k, j&50 in the limit k→` but we
expect that ^s i , js i , j 1k&

2.0 and ^s i , js i 1k, j&
2.0 in the

FIG. 4. Specific heatC as a function ofT for g51.2 andp
50.82. The first peak, located atT.0.299, is referred to an anti
ferromagnetic transition, while the others, magnified in insets~T
.0.349 andT.0.545!, to ferromagnetic transitions. The circles
insets represent our numerical data.
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2756 56M. PASQUINI AND M. SERVA
same limit. Our proposal is that these last two quantit
properly characterize the reentrant paramagnetic phase~even
if they should not vanish in the high temperature param
netic phase!. Unfortunately, it is well known that in two-
dimensional models the computation of long distance co
lation is a difficult task and, in our case, the computation a
involves averages over the disorder, making the situa
even more complicated. We think that some work can
done in this direction but it will demand much technic
effort so that our claim that the reentrant paramagnetic ph
is somehow a glassy phase is, at this point, more a conjec
than an established fact.

Two more questions remain to be answered. The firs
the most relevant: what is the role of the annealed appr
mation in the qualitative features of the phase diagram?
better, is the new phase a mere consequence of the ann
approximation? In this case, our fixed frustration mod
would have an interest in itself but it would not be a go
approximation of the quenched one. We think that this qu
tion can only be answered by direct Monte Carlo simulati

The second question is, in this model the frustra
plaquettes appear only in couples, what is the role of
special correlation? To be more specific, would a mode
which all vertical bonds equal unity while the horizontal a
independent random variables which take two possible
A.
s

-

-
o
n
e

se
re

is
i-
r
led
l

s-
.
d
is
n

l-

ues of opposite sign have the same qualitative behavior?
cannot approximate such a model by our fixed frustrat
technique so that this question can also only be answere
Monte Carlo simulation; nevertheless, we are convinced
the answer should be positive. In fact, the special nature
correlation between plaquettes is short ranged and there
reason why it should affect the long range behavior of
system.

In conclusion, we would like to stress that in spite of t
very partial results contained in this paper and of the ma
unsolved questions this work sheds some light on the v
important point of the existence of a finite temperature d
ordered phase ford52 frustrated systems. In fact, in th
most restrictive interpretation of our result we can still affir
that the fixed frustration annealedd52 model has a low
temperature glassylike phase, while in the most generous
we can say that a true glassy phase exists for quenched
dom d52 systems.
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